Tema 9: Introducción a la Inferencia Estadística. Intervalos de confianza y contraste de hipótesis
INFERENCIA ESTADÍSTICA
- Estimación del valor en la población (Parámetro) a partir de un valor de la muestra (Estimador). Pueden ser puntuales o a través de intervalos de confianza para aproximarnos a valor de un parámetro. Por ejemplo: estimar el peso promedio de la población usando el peso promedio de la muestra.
- Contraste de hipótesis: a partir de valores de la muestra, se concluye si hay diferencias entre ellos en la población. Pruebas de hipótesis ¿el valor obtenido es diferente del valor especificado por H0?
ESTIMACIONES
Proceso de utilizar información de una muestra para extraer conclusiones acerca de toda la población. Se utiliza la información recogida para estimar un valor. Las estimaciones pueden realizarse de dos formas:
Proceso de utilizar información de una muestra para extraer conclusiones acerca de toda la población. Se utiliza la información recogida para estimar un valor. Las estimaciones pueden realizarse de dos formas:
- ESTIMACIÓN PUNTUAL:
Consiste en considerar el valor del estadístico muestral como una estimación del parámetro poblacional. Por ejemplo: si la tensión arterial sistólica de una muestra es de 125 mmHg, una estimación puntual es considerar este valor como una aproximación a la tensión arterial sistólica media poblacional. Esto genera mucha incertidumbre y mucha imprecisión.
- ESTIMACIÓN POR INTERVALOS:
He aquí un ejemplo explicativo de la Inferencia Estadística: estimación puntual, media, varianza y proporción:
ERROR ESTÁNDAR
Es la medida que trata de captar la variabilidad de los valores del estimador (en este caso la media de los días de curación de la úlcera. El error estándar de cualquier estimador mide el grado de variabilidad en los valores del estimador en las distintas muestras de un determinado tamaño que pudiésemos tomar de una población. Cuanto más pequeño es el error estándar de un estimador, más fiable el valor de una muestra concreta.
Si en lugar de variar el valor de la media en las muestras entre 52 y 64 días, variara entre 20 y 90 días, sería menos probable que al seleccionar una muestra y calcular su media, ésta estuviera cercana a 57,46 que es el valor de la media en la población.
Cálculo del error estándar: depende de cada estimador:
TEOREMA CENTRAL DEL LÍMITE
Para estimadores que pueden ser expresados como suma de valores muestrales, la distribución de sus valores sigue una distribución normal con media de la de la población y desviación típica igual al error estándar del estimador de que se trate.
Si sigue una distribución normal, sigue los principios básicos de ésta:
INTERVALOS DE CONFIANZA
Son un medio de conocer el parámetro en una población midiendo el error que tiene que ver con el azar (error aleatorio). Se trata de un par de números tales que, con un nivel de confianza determinados, podamos asegurar que el valor del parámetro es mayor o menor que ambos números.
Se calcula considerando que el estimador muestral sigue una distribución normal.
Mientras mayor sea la confianza que queramos otorgar al intervalo, éste será más amplio, es decir, el extremo inferior y el superior del intervalo estarán más distanciados, y, por tanto, el intervalo será menos preciso.
- I.C de un parámetro = estimador +- z (e. Estándar)
- Z es un valor que depende del nivel de confianza 1-a con que se quiera dar el intervalo.
- Para nivel de confianza 95% z=1,96
- Para nivel de confianza 99% z=2,58
- El signo +- significa que cuando se elija el signo negativo se conseguirá el extremo inferior del intervalo y cuando se elija el positivo se tendrá el extremo superior.
Para controlar los errores aleatorios, además del cálculo de intervalos de confianza, contamos con una segunda herramienta en el proceso de inferencia estadística: los tests o contrastes de hipótesis.
Con los intervalos nos hacemos una idea de un parámetro de una población dando un par de números entre los que confiamos que esté el valor desconocido.
Con los contrastes (tests) de hipótesis la estrategia es la siguiente:
- Establecemos a priori una hipótesis acerca del valor del parámetro
- Realizamos la recogida de datos
- Analizamos la coherencia de entre la hipótesis previa y los datos obtenidos
Son herramienterras estadísticas para responder a preguntas de investigación: permite cuantificar la compatibilidad entre una hipótesis previamente establecida y los resultados obtenidos.
Sean cuales sean los deseos de los investigadores, el test de hipótesis siempre va a contrastar la hipótesis nula (la que establece igualdad entre los grupos a comparar, o lo que es lo mismo, la no que no establece relación entre las variables de estudio).
ERRORES DE HIPÓTESIS
- Con una misma muestra podemos aceptar o rechazar la hipótesis nula, todo depende de un error, al que llamamos α.
- El error α es la probabilidad de equivocarnos al rechazar la hipótesis nula
- El error α más pequeño al que podemos rechazar H0 es el error p.
- Habitualmente rechazamos H0 para un nivel α máximo del 5% (p)
Comentarios
Publicar un comentario